AN APPROXIMATE METHOD FOR CALCULATING THE
BOUNDARY LAYER OF TWO-TEMPERATURE PLASMA

AT ELECTRODES WITH LARGE VALUES OF THE HALL
PARAMETER

L. E. Kalikhman

The processes occurring in the plasma boundary layer at electrodes are described by a
complicated system of differential equations with boundary conditions specified on two
boundaries. Even when a computer is used, solution of a boundary-value problem of this
type presents serious difficulties. Besides, a method is desirable whereby fairly fast
estimates can be obtained and the influence of different gross factors analyzed. From

this point of view, the development of approximate methods is of great value for theory
of the plasma boundary layer.

The method of integral relations [1] is used in the present paper for solving the problem on the
boundary layer of a fully ionized two-temperature plasma at electrodes of a channel with crossed E and
B fields. In its essential approach, the method follows the same lines as the author's earlier paper [2],

The Problem. To solve the system of equations, of continuity,
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It was shown in [3] that the functions p,fy, and Egx are constant over the boundary-layer cross-sec-
tion.*

The current densities are given by
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The transport properties 7;, 7e, A, Ae, 0 of the plasma across the magnetic field, and the coeffi-
cients Ak, are known functions of Tj, Te, n, and the Hall parameters H;j and He [3].

The profile of the plasma mean velocity per unit mass may be written as the polynomial
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Here 6y = 6y (x) is the thickness of the dynamic boundary layer.

The condition on the inner boundary cf the layer is obtained from the equation of motion (2), which,
when y =0, gives

On applying the equation of motion close to the outer boundary of the layer, we get
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Using the transformation of (8) from the variable y to £, and assuming for simplicity that the product
7;p is constant across the boundary layer
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*The term —j,uB should appear on the right side of Eq. (23) of [3]. There is a misprint in expressions (8)
of [3] for mxx®, mxy®, ”Tyye- The numerical factor of the third terms on the right side is equal to 10/[3 (2 +

V2)1.
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Let the ion braking temperature and braking temperature gradient be defined by
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The profile of the braking temperature gradients will be written as the polynomial
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Here Ay =A (x) is the thickness of the thermal boundary layer. The condition on the inner boundary

of the layer, requ1red for finding the coefficients of the polynomial t1*° may be derived from (3), which
gives, with y =0,
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Denoting the ion Prandtl number by
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and using (8), we get
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Written in the dimensionless form, the parameter y; determining the shape of the ion braking tem-
perature gradient profile is
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The following values are then obtained for the coefficients:
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The electron temperature gradient profile will be written as
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In the dimensionless form, the parameters ye and a, determining the shape of the electron tempera-

ture gradient profile, are
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The parameters Kj and K¢ are approximately proportional to (Ti/Tis) 3/2, (Te/TeS)?’/Z, so that the present
approximate method can have reasonable accuracy when Tg and Tj only vary slightly across the boundary
layer.

When reducing the parameters ye and a to the dimensionless form, the transverse current jy is as-

sumed to be uniformly distributed, while no axial current is allowed outside the boundary layer; hence the
scales of the current jyg and the electric field-strength Exg are connected by the relationship
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Having obtained the ion and electron temperature gradient profiles, we can write the profile of the
plasma braking temperature gradients in the boundary layer in the form
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On integrating the equation of motion across the layer and recalling (10), we can reduce it to the
ordinary equation
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Adding Egs. (3) and (4), we find the energy equation for the plasma as a whole to be
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We add this equation to Eq. (2), as multiplied by u, to get
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Integrating (22) across the layer under the assumption that Ty, = const, we can reduce it tothe form
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is the thickness of the energy loss.

The mean Joule dissipation over the layer will be found from (5) and (6) in conjunction with Eq. (18)
for the temperature profile, under the simplifying assumptions that

0= Gy, He=~ Hey, Tore Toy, ulUg=E.

After reduction to the dimensionless form, (23) then becomes
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Using profiles (8) and (18) to evaluate the integral thicknesses of the boundary layer, it is found that
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Following [2], the integral relation (20) for the moments may be reduced to a quadrature which is
convenient for practical computations. We write (20) in the form
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where ¢, is a constant, to be defined below. Put
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Multiplying (26) by U°C, we can write it in the linear form
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Successive approximations have to be used to obtain J; from (28). Rapid convergence is ensured if ¢,
is chosen in such a way that the function ¢ varies weakly with A.

According to (27), & is a nearly linear function of A; on demanding that the coefficient of A vanish,
the following relationship is obtained for c;¢
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When & ~ const, the basic equation (28) amounts to a simple quadrature.

Since ®A is not constant, the solution of the integral relation (24) is best written in the form
x°

(073U 3 M%) = 2 (D)oo § 9T 2,70

0

xq° xk+1° (29)
A2 (D p)ee S 0.°U 140z + .o+ 2(Dp)e, o g 02U St xods® 4 .. .
x1° x,°

It is assumed that @A is fixed in each subinterval of the boundary layer, from x°; to x°y¢y; its value
is found on the assumption that the relevant quantities take the values that they have at the start of the sub-
interval.

The computation starts with finding the quantities at the channel input, i.e., at the start of the first
subinterval. If U°g = 0 here (there is no critical point), and if no auxiliary information is available on the
initial thicknesses, it may be assumed that

d=A=06*=0 =A*=0=20 when ° =z, = 0 ,

To obtain the initial condition with x° = 0, 1'Hopital's rule has to be applied to the indeterminate
forms and the initial values of A/8, 6/A and the other ratios determined.
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With x =0, (20) gives
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From (24), with x =0,
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Applying 1'HOpital's rule,

i _é_ 2_. ) 1 ;"’L'UJ i o 1 Aow ° i 1 -1
(@)(5) = (%) [z v+ 2 bt (292 )

130
This equation, in conjunction with (25), (19), (15), (17), and (27), provides the basis for the numerical
computation of the initial ratio A/S.

The friction and the heat exchange are found from the computation results for the distributions § =
§(x) and A = A(x). The coefficient of ion friction is
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Stanton's number for the electrons is determined by the thermal conductivity and the convection:
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Stanton's number for the transport of enthalpy by the electric current is
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Ag an example, the boundary layer of a two-temperature argon plasma at the positive electrode of an
accelerator channel was calculated under the conditions:

characteristic dimension (channel width) L = 0.2 m, entry velocity Ugy = 5000 m/sec, pressure p =
1072 mm Hg, ion temperature Tis, = 2000° K, electron temperature Tegy=10,000°K, Tey = 1500° K, Tjyw =
300° K, and magnetic field induction B = 0.5 T. These figures correspond to

Rso = 7.794 . 10®m~3, 7,0 =4.99 . 10~°sec, Ty == 2.2 » 1077 gec.
n, = 5.196 . 1019m-3, Tew = 9.34 - 10-1sec, 7., = 6.23 . 109 sec.

The figure
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was given, corresponding to a discharge current density jy = 6459 - 3A /m? and electric field-strength Ey =
jy/O’oo = 2590 V/m.
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The corresponding figures for the criteria are

_ B i 953
K = gpt=103, M~ Y & 3
E L
® = 22 500, H,o=438, Ho=10265
kT,

R, =1.565 . 10%, R, = 3.6 . 10", P, = 0.619, P, == 1.925 . 107,

The case of an elementary external flow was selected, i.e., an isothermal plasma flow with break-
away of the electron temperature

Ts = Ty = const, Ti = T = const, Tp = T = cOnSt
with constant pressure, with uniformly distributed discharge current, and with forbidden axial current
Jus == Jyeo = const, Fos = 0.
The expression Ug® = VI + 2S5x° was then obtained from the equation of motion (2).

The distributions of the dynamic thicknesses §, 6*, and &4 over the length of the electrode, and the
distributions of A, A*, and 8, are shown in Fig, 1.

A curve of Cf\fRi is given in Fig. 2. Profiles of the velocity u® = u/Ug and the temperature Tg® =
Te/Teg, are given in Fig. 3.
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